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Abstract A frequent task in computer-aided drug design is
to identify novel chemotypes similar in activity but
structurally different to a given reference structure. Here
we report the development of a novel method for atom-
independent similarity comparison of molecular fragments
(substructures of drug-like molecules). The fragments are
characterized by their local surface properties coded in the
form of 3D pharmacophores. As surface properties, we
used the electrostatic potential (MEP), the local ionization
energy (IEL), local electron affinity (EAL) and local
polarizability (POL) calculated on isodensity surfaces. A
molecular fragment can then be represented by a minimal
set of extremes for each surface property. We defined a
tolerance sphere for each of these extremes, thus allowing
us to assess the similarity of fragments in an analogous
manner to classical pharmacophore comparison. As a first
application of this method we focused on comparing rigid
fragments suitable for scaffold hopping. A retrospective
analysis of successful scaffold hopping reported for Factor
Xa inhibitors [Wood MR et al (2006) J Med Chem
49:1231] showed that our method performs well where
atom-based similarity metrics fail.
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Introduction

The design and synthesis of novel molecules with a desired
biological profile is the key task in medicinal chemistry.
Much endeavor in attaining this goal has been driven by the
concept of molecular similarity, which states that similar
molecules tend to exhibit similar biological responses.
Hence, the prerequisite of automated similarity searching
is to define descriptors for molecules that relate similarities
between observed properties in molecules to similarities in
the descriptor space. The dilemma is now to develop
descriptors that are not only capable of identifying similarly
active molecules, but also of retrieving structurally distinct
chemotypes as they may offer new entry points for
identification of lead compounds with improved selectivity
and/or pharmacokinetic properties [1]. Detailed studies by
Brown and Martin [2, 3] showed that topological searches
(based on atom connectivity) are well suited for identifying
bioactive molecules, indicating that structurally similar
molecules also have a similar biological profile. However,
several cases have also been reported where structurally
different molecules act on the same biological target [4].
This supports the concept of molecular recognition occur-
ring via electronic properties near the molecular surface.
Intermolecular interaction could then be described by the
distribution of local interaction properties on the molecular
surface [5, 6]. This atom-independent description of whole
molecules or of discrete substructures could be of advan-
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tage for identifying novel scaffolds. There has been
considerable interest in this area in recent years, which
has led to a number of computational tools that employ
varying approaches such as feature trees [7], reduced graph
representations [8], topological descriptors [9], molecular
field points [10] or molecular interaction fields [11, 12].
Complementary to graph-based methods, quantum mechan-
ical (QM) techniques are independent of topology and use
the wavefunction or electron density to obtain information
about molecular interaction properties such as polarizabil-
ity, ionization potentials, electron affinities and multipole
moments. Politzer [13] and Clark [14, 15] have developed a
set of local properties that describe molecular interaction
features on molecular surfaces. These local properties can
be obtained readily from semiempirical molecular orbital
(MO) calculations. In contrast to classical approaches, these
properties are able to describe the surface anisotropy of
local properties accurately, which ultimately allows us to
account for non-classical interactions such as σ-hole
bonding [16–20] or Lewis donor–acceptor interactions
[14, 21, 22], which are often neglected in the approximate
atomistic interaction potentials of standard force fields. The
concept of σ-hole bonding [18–20] was recently proposed
as a generalization of the concept of halogen bonding, and
describes non-covalent but highly directional interactions of
Group V–VII atoms.

One of the most daunting hurdles in identifying new lead
structures is the structural diversity of chemical space to be
explored during virtual screening. However, the amount of
chemical space that can be explored by virtual high-
throughput screening approaches is small compared to the
accessible number of compounds, estimated to be up to
1060 molecules [23]. Alternative approaches are therefore
required. One alternative to sampling whole molecules can
be the analysis of the fragment space spanned by smaller
substructures that occur repeatedly in molecules of interest
(e.g., drug-like molecules). Fragment spaces are a combi-
nation of molecular fragments and connection rules [24].
They offer an attractive alternative to virtual compound
libraries for several reasons. Firstly, they are considerably
smaller than conventional virtual screening libraries, but
can cover the same area of chemical space. Secondly, they
contain small molecular entities, making computational
resources less demanding. Last, and most importantly, the
treatment of fragments greatly reduces the challenge posed
by combinatorial flexibility. This inspired us to exploit the
advantages of fragment spaces and to combine them with
the non-atomistic representation of local properties pro-
jected onto molecular surfaces. Here we describe the design
of the method in detail, followed by a validation study
using Factor Xa inhibitors as a recently published example
for scaffold hopping [25]. In the drug design context, the
term scaffold hopping describes the discovery of structur-

ally novel compounds starting from known actives by
significantly changing the central core structure (for recent
reviews, see [1, 26].

Methods

We use ParaSurf [27] to calculate the local surface
properties and the resulting numerical descriptors for
fragments whose open valences (attachment points) must
be saturated appropriately. In-house tools were developed
as extensions to ParaSurf that allow the treatment of
fragments and fragment surfaces: All triangulation points
of the isodensity surface and corresponding local properties
relevant to the saturation valences are omitted in the
program used subsequently. In addition, this program
recalculates the standard set of descriptors based on the
remaining surface points. The resulting data is processed by
a Python routine that identifies critical points of the local
property surfaces based on a statistical analysis of the local
property distributions on the isodensity surface. The critical
points represent a set of pharmacophore-like features that
correspond to local property extremes. These feature
pharmacophores are then stored as a pseudo-molecule,
consisting of a standard set of eight atom types that each
characterize one of the local property features (MEPmin,
MEPmax, IELmin, IELmax, EALmin, EALmax, POLmin,
POLmax) described in more detail below.

To account for the fact that calculating an accurate
description of the molecular surfaces is computationally
quite expensive, we decided to work with static databases,
in which the feature pharmacophores of all template
fragments are stored. In the query step, the feature
pharmacophore of a query fragment is used as reference
for calculating the similarity score of the pre-aligned
property features for each suitable fragment in the database.
As we are dealing with scaffolds that have per definition
two or more exit vectors, we used an exit vector matching
and alignment procedure (1) to identify suitable fragments
in the database, and (2) to superimpose these fragments
together with their feature pharmacophores onto the query
fragment. Once aligned, it is straightforward to calculate the
feature similarities as described below.

Calculation of molecular surface local properties

Chemical structures were coded in the SMILES notation
[28] and 3D structures were generated by CORINA [29].
Exit vector valences were saturated with a methyl group.
Single-point calculations were performed on the CORINA
structures using the semiempirical Austin Model 1 (AM1)
Hamiltonian [30] as implemented in VAMP [31]. The
resulting SD files were used as input to the calculation of

548 J Mol Model (2008) 14:547–558



the molecular surface properties by ParaSurf [27]. ParaSurf
uses the results of semiempirical MO calculations to create
isodensity surfaces that may fit to a spherical harmonic
expansion [32]. Isodensity surfaces are defined as molec-
ular surface representations for which the contour of the
surfaces is established by a constant cutoff value for the
electron density. The surfaces can be created by marching-
cube [33] or shrink-wrap [34–36] algorithms. In this study,
marching cube surfaces corresponding to the 0.003 e Å-3

isodensity contour were used as default. The surfaces thus
created are tessellated and the molecular electrostatic
potential (MEP) and the three local properties local
ionization energy (IEL [13]), local electron affinity (EAL

[14]) and local polarizability (POL [14]) are calculated at
each triangulation point. The physical significance of the
local properties with respect to intermolecular interactions
has been discussed in detail and the properties have since
been used to generate a set of 40 descriptors appropriate for
QSPR studies [15]. In the course of this study, however, we
developed a different approach by identifying critical points
of these four local property surfaces. To this end, we used
the surface triangulation points (vertices) and the
corresponding local properties as calculated by ParaSurf.

Identification of surface property extremes and generation
of the local property pharmacophore

The pharmacophore generation and similarity search engine
(see below) were programmed using the Python language
and the OEChem library toolkit [37]. Using triangles is a
common way to depict molecular surfaces. In ParaSurf, the
vertices of every triangle are associated with the value of
each local property at this point on the molecular surface. In
addition, every vertex is assigned to the explicit atom that
contributes most to the electron density at the surface point
under investigation (based on the linear combination of
atomic orbitals, LCAO, approach). As local extremes of
electronic properties on the molecular surfaces are consid-
ered to encode hot spots for intermolecular interactions, a
filtering procedure was applied that uses the median and
standard deviation (σ) of each property distribution to
define the cutoffs for the corresponding property value.
Since for some molecules we observed an unbalanced
distribution of the local properties, we tried to compensate
for this by a pragmatic outlier correction leading to a
standard deviation (σcorr) that is less influenced by local
property extremes. To reduce the influence of strongly
positive or negative properties on the statistical analysis, we
extracted the vertices with local property values inside the
2σ region around the mean value and re-calculated the
mean and the standard deviation (σcorr) for those vertices.
In the ideal case, this region corresponds to a subset of the
molecular surface without specific interaction features, so it

was used as a reference for hot spot detection. The value of
σcorr gives an indication of the distribution of the properties
on the molecular surface and was used together with the
global extreme values (Pmin, Pmax), to define lower and
upper threshold values according to Eqs. 1 and 2.

Lower threshod : TL¼ Pmin þ scorr ð1Þ

Upper threshod : TU¼ Pmin þ scorr ð2Þ
The surface areas within these ranges were found to be

adequate representations of positive or negative hot spots
on the surface and are directly linked to the molecular
interaction pattern (see Validation). This identification of
hot spots on the surface in itself is valuable for visual
comparison. However, when dealing, with a large number
of fragments, one needs a fast and robust method for
numerical comparison of the presence or absence of these
hot spots on the molecular surface.

According to our definition of hot spots, for each
property we keep only those vertices with values below
TL and above TU. These critical surface vertices correspond
to either minima or maxima of the individual local
properties. Generally, we aim at having one critical surface
vertex per local extreme on the surface. However, in cases
where hot spots correspond to an extended segment on the
surface, the vertex selection procedure results in multiple
extremes for this segment. Therefore, we used a distance
comparison among the critical vertices to identify one
extreme out of the neighboring vertices (default: rmsd
<=0.2 Å). Separate comparisons are performed for the
vertices that correspond to positive or negative property
extremes, hereafter termed "unique surface extremes". The
resulting unique surface extremes proved to be insensitive
to increasing the ranges for the statistical vertex selection
(i.e., using larger values for σcorr in Eqs. 1 and 2). In
addition, these statistically derived unique surface extremes
were found to agree well with those given by a computa-
tionally more demanding analytical approach, where local
extremes together with the saddle points were obtained
from a spherical harmonics expansion of the local property
distributions (Fig. 1).

The unique surface extremes for all properties are stored
together in the form of a pseudo molecule that contains the
extreme vertices as atoms whose atomic numbers corre-
spond to a feature type (Fig. 2). Eight atom types are
defined that correspond to the four local properties MEP,
IEL, EAL and POL, each subdivided into the classes
maxima and minima. This form of storing the information
gives us easy access to visualizing the surface extremes via
standard modeling packages like MOE [38] or PyMol [39].
In addition, we can use standard methods for superimpos-
ing pre-calculated surface extremes, thus avoiding redun-
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dant QM calculations (see section on exit vector matching
below).

Conformer generation

As for any 3D-technique, care must be taken in identifying
representative conformers. For smaller molecules, or even
fragments, the conformational space is significantly re-
duced, allowing us to use a very accurate but CPU-
intensive method for describing the fragment’s properties.
In our validation study, we started with one input geometry
obtained by CORINA from the SMILES depiction of our
target fragment scaffold-4 (see Validation) and used Omega
[40] to generate a conformer library. As for the semiempir-
ical calculation, we saturated the exit vector valences with
methyl groups. The Omega parameters were optimized
starting from the settings for high-quality screening of
standard molecules as suggested by Kirchmair et al. [41].
The best parameters for fragments were found to be
ewindow=25, maxconfs=250, rms=0.3 with electrostatics
turned off (mmff94s_NoEstat). The comparatively low rms
cutoff was used to allow for an adequate number of
conformers, including variations of the exit vector orienta-

tions that are very important in the context of scaffold
hopping. However, these settings can only be seen as
provisional since we have not yet used Omega on a larger
scale for fragment-based conformer generation. In the case
of scaffold-4, we obtained 17 conformers with a good
coverage of space including the conformation obtained by
manual alignment (see below).

MEP 

IEL 

EAL 

POL 

 max    min 

Fig. 2 Example of a local property pharmacophore. Pharmacophore
features derived from local surface properties are shown as spheres.
The 3D molecular structure is shown for clarity. Maxima and minima
are represented by large and small spheres, respectively. Color coding
used throughout this paper for individual local properties is summa-
rized in the framed box: purple-blue MEP,cyan IEL, orange EAL,
yellow POL. Individual features are highlighted for each of the local
properties and the 3D molecular structure is shown for clarity

a) 

b) 

Spherical Harmonics-Derived  
Critical Points 

Spherical Harmonics-Derived  
Pharmacophore 

ParaFrag  
Pharmacophore 

De-clustering 

MEP 

EAL 

IEL 

POL 

1. Statistical Filter 
 
2. De-clustering

Fig. 1 a, b Comparison of analytically and statistically derived local
property pharmacophores. a The left panel shows the critical points
derived analytically from a tenth order spherical harmonics expansion.
Selection of the top extremes and de-clustering results in the spherical
harmonics-derived pharmacophore (upper box). Note that the position
of the retrieved critical points strongly depends on the order of the
spherical harmonics expansion employed, which determines the

accuracy of the surface approximation. The ParaFrag pharmacophore
derived from exclusively filtering surface local property distributions
on marching cube surfaces is shown for comparison (lower box). b
The local property surface distributions are depicted for comparative
reasons. A concise description of the individual pharmacophore
features is given in Fig. 2
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Exit vector matching

A successful replacement of central elements from known
active structures often crucially depends on a similar spatial
arrangement of exit vectors, when comparing template and
putative new scaffold. In the context of fragment database
queries, this implies that a computationally inexpensive
filtering procedure that is capable of identifying fragments
with suitable exit vector geometry will significantly reduce
the number of fragments to be considered in the subsequent
similarity calculation. Moreover, the exit vectors offer an
elegant way for a simple and computationally efficient
alignment of fragments and their molecular surfaces,
reducing the number of resource-intensive QM calculations
to the absolute minimum. We describe the exit vector
geometry with respect to the fragment scaffold by defining
vectors that originate at the attachment points (the heavy
atom containing the exit vector valence) and point towards
the topologically connected atom that is part of the
corresponding saturating exit vector (CH3 in this study).
To facilitate database mining for fragments of suitable exit
vector geometry, a second pseudo molecule is created that
consists of all exit vectors encoded as Li (for Linker) and
the corresponding attachment points in α-position with
their original element symbol. By defining bonds between
all exit vectors and the corresponding attachment points and
connecting all individual attachment points pairwise, the
resulting pseudo molecule can serve as a template for a
substructure search based on SMARTS strings (Fig. 3).

Starting from the query SMARTS string, the algorithm
identifies all fragment conformers in the fragment database
that have exit vector geometries similar to the query
fragment. Firstly, the database is mined for fragments that
contain the query SMARTS string. Subsequently, all
possible alignment structures are assessed to determine
whether they lie within a user-defined rmsd cutoff with
respect to the query structure. Database fragments that do
not match this requirement are discarded for subsequent
pharmacophore alignment and comparison. For fragments
that do match the exit vector geometry of the query,
alignments are performed in all possible orientations that
satisfy the rmsd criterion. The transformation matrices that
result from the substructure alignments are also applied to
the corresponding local property pharmacophores in order
to fit the rearranged orientation of the respective database
fragment.

Feature point comparison and scoring

The similarity metric for comparing local property pharma-
cophores is based on evaluating distances between the local
property features of query and target and resembles a
classical pharmacophore alignment. The algorithm imple-

mented in the similarity routine determines distances
between local property features of query and target. Only
distances between features of equal properties are evaluated
in the subsequent procedure. The spatial distance of two
features i (of query A) and j (of target B) is calculated as the
modulus of the Euclidian distance vector. As the distance is
evaluated with respect to the query, dA,B resembles the
feature radius of the conventional pharmacophore model.
The algorithm creates a distance matrixD(NxM), whose rows
(N) and columns (M) are defined by the local property
features of query and target, respectively. The elements of
the matrix (D)ij represent the distance between the feature i
of the query A and the feature j of the target B. The
distance matrix is rearranged to a binary scheme with
matrix elements being set to 1 or 0 for distances of
matching features that range within or exceed a predefined
distance cutoff, respectively. Matrix elements that corre-
spond to combinations of different local property features
are set to 0. The similarity score SA,B is now defined as the

a) 

b) 

c) 

N

NH

NH

CH
2

R

C
O R

N

NH

NH

R

O R

R

R

Fig. 3 a–c Schematic illustration of the exit vector matching and
alignment procedure. Generation of the SMARTS exit vector
substructure. a Attachment points (blue) and exit vectors (red) are
identified. b Attachment points are subsequently connected pair wise
(dashed lines) to generate the substructure pattern. c A pseudo-
molecule containing the exit vector substructure is created for
subsequent SMARTS pattern matching
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sum over all matrix elements, divided by the minimum
number of features to match (Eq. 3).

SA;B ¼

PN

i¼1

PM

j¼1
Dij

min N ;Mð Þ ð3Þ

The algorithm also allows us to exclusively score match
features of predefined local properties in a procedure
analogous to commonly used pharmacophore comparison
methods. Moreover, in order to train the scoring scheme for
a specific family (or biologically active cluster) of lead
structures, sub-matrices corresponding to individual prop-
erty features can be evaluated separately and the resulting
scores, sk, can be weighted by coefficients ck in an additive
scheme (Eqs. 4, 5).

SA;B ¼
Xk¼8

k¼1

CkSk ð4Þ

Where

Sk ¼

PNk

i

PMk

j
Dij kð Þ

min N ;Mð Þk
ð5Þ

Here, Dij(k) denote the matrix elements contained in the
sub-matrix that corresponds to property feature k, while Nk

and Mk correspond to the rows and columns of the sub-
matrix, respectively.

Validation

The central hypothesis behind our study is that structurally
diverse fragments with a similar arrangement of interaction
features should possess a similar distribution of local
properties on their molecular surface. To corroborate this
assumption, the research presented in this study followed
two major objectives: to develop a method for the atom-
independent description of a molecular fragment’s interac-
tion features that is based on molecular surface properties
and to validate the application of this strategy with regard
to its ability to explain a literature example for scaffold
hopping retrospectively.

Method development

In contrast to many surface-based similarity techniques
described in the literature, the rationale behind our
approach was to extend the portfolio of these methods with
a technique based on quantum-mechanical principles that is
known for high accuracy and also well suited for the
description of non-classical effects. The basic strategy was
to define a set of critical points of local properties on the

fragment surface that should serve as a means to create a
pharmacophore-like model that encodes hot spots for
intermolecular interactions with a protein target.

For a first validation of our approach, we chose a pair of
structurally similar fragments and used ParaFrag to assess
the similarity in terms of surface properties (Fig. 4). 1-
Chloro-4-sulfonyl-benzene(1) and 4-sulfonylpyridine (2)
will be used to illustrate the key concept of our method.
Usually, the global extremes of a fragment’s local property
surface will represent the most probable sites for inter-
actions with other molecules. Reducing the information
encoded on the property surfaces to just their global
maxima and minima, however, neglects important sites of
possible intermolecular interactions that might be less
pronounced but are still important. To account for these
limitations, we developed an alternative strategy that relies
on a statistical treatment of the local property distributions
on isodensity surfaces, as described in Methods. A
shortcoming of this strategy is that it tends to detect
clusters of extreme vertices rather than individual extremes.
These clusters consist of the local extremes and adjacent
vertices with similar absolute property values. To un-
ambiguously select relevant features, the local extreme of
each cluster is identified and, within a cluster, only vertices
above a certain rmsd threshold with respect to the local
extreme are retained (Fig. 5). This shows that our method
succeeds in reducing the information from the surface local
property distributions significantly to those points critical to
intermolecular interactions.

At this point, it becomes important to see whether the
methodology developed is able to detect similarities (and
differences) between local property isodensity surfaces of

SO2R

Cl

N

SO2R

1 2
Fig. 4 Comparison of two structurally very similar fragments with
subtle electronic differences: 1-chloro-4-sulfonyl-benzene (1) and 4-
sulfonylpyridine (2). Exit vectors are labeled with R
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bioisosteric fragments. Using ParaFrag, we calculated the
total similarity of the local property pharmacophores
(sphere radius=1) of 1 and 2 to be 0.47 (MEP=0.5, IEL=
0.5, EAL=0.4, POL=0.5). The visualization of the individ-
ual feature points using the example of fragment 1 is shown
in Fig. 6. Coulomb interactions are usually the most
prominent intermolecular interactions, and features of the
MEP surface are therefore of crucial importance. Regarding
the MEP surface, minima at both the sulfonyl oxygens and
the chlorine atom would be expected by classical

approaches. Whereas the minima at the sulfonyl oxygens
are recovered, it can be observed that a maximum is
detected at the surface at the extension of the chlorine σ-
bond. Although this may appear counterintuitive at first, it
may be regarded as indicative of σ-hole bonding. In this
particular case the non-covalent interaction of a halogen
atom with a Lewis base suggests the presence of an electron
deficiency in distinct regions around the halogen surface
[17, 42]. In atomic monopole-based force fields, electro-
static interactions are usually treated by assigning fictitious

IELMEP EAL POL

Fig. 6 Individual local property features of 1-chloro-4-sulfonyl-
benzene. Critical points of local property surfaces are depicted
separately for the individual local properties. Maxima are shown as
large red spheres; minima are represented as small blue spheres. The
3D molecular structure is shown in cyan. Top views, side views and
the corresponding local property isodensity surface are depicted in the

top panel, middle panel and lower panel, respectively. Although the
3D molecular structure is shown for clarity, it should be stressed here
that the derived properties are not ascribed to functional groups but
represent atom-independent features that are governed by the
electronic structure of the entire molecule

a)

b)

MEP POL IEL EAL 

Identify unique extremes  
 

Fig. 5 a, b Local property pharmacophore model. a Generation of the
local property pharmacophore. Left panel Depiction of critical points
on the local property surfaces of 4-sulfonylpyridine. Large spheres
correspond to local maxima while small spheres represent local
minima with color coding as described in Fig. 2. Note the clusters
around critical spots (bold arrows). Right panel Resulting local

property pharmacophore after application of the rmsd filter to
attenuate clustering (boxed). b Local property surfaces of 4-sulfonyl-
pyridine 2. Comparison of the surface distribution of local properties
with the pharmacophore model reveals that all critical spots are
recovered in the pharmacophore
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partial charges to individual atoms followed by calculating
the interaction potential by Coulomb’s law. In the frame-
work of semiempirical MO theory, the MEP can be
calculated efficiently using a zero-differential overlap-based
atomic multipole model [43]. Whereas the MEP derived
from classical approaches reveals isotropic distributions
from an atomistic view, MEPs derived from quantum
mechanics encode information on anisotropic electron
density distributions around atoms. The presence of
anisotropic MEP distributions with a positive MEP along
the extension of the halogen σ-bond (the σ-hole) for certain
types of halogenalkanes was reported only recently by
Clark et al. [17], who also presented a theoretical
foundation based on density functional theory (DFT)
studies. Initiated by the crystallographic studies of Hassel
[44], σ-hole bonding has recently gained increased atten-
tion due to its potential use as a non-classical effector in
intermolecular recognition events and examples much
resembling classical hydrogen bonds and cation-π inter-
actions have also been found to occur in protein–ligand
complexes [45]. Clearly, the presence or absence of σ-holes
on halogen atoms depends on the molecular environment
and quantum mechanical methods are required to recover it.
To examine whether the observed σ-hole on the chlorine of
1 is merely an artifact of the semiempirical approximation,
higher level DFT calculations (Gaussian03 [46]) were
performed, employing the B3LYP [47–49] hybrid density
functional with the 6–311+G(d) basis set [50–56]. Figure 7
compares the MEP surfaces derived from the AM1 and
B3LYP/6–311+G(d) calculations. Although the electroposi-
tive potential crown is markedly more pronounced in the
AM1-derived MEP surface, the σ-hole is recovered also at
the B3LYP/6–311 G(d) level of theory. The example of 1-
chloro-4-sulfonyl-benzene thus shows that the semiempir-
ical approach used throughout our method is accurate
enough to detect molecular details that might be responsible
for intermolecular interactions and that are only partially
covered, if at all, in most of the currently available
pharmacophore tools.

Using the example of 1-chloro-4-sulfonyl-benzene, we
will briefly describe the interactions represented by the
local property pharmacophore. The strength of dispersive

interactions (London forces) depends on the polarizability
of the interacting molecules, which is usually unevenly
distributed throughout a molecule. Preferred sites of
dispersive interactions will be those parts of the electron
density distribution that can be easily polarized. Figure 6
reveals local polarizability minima for the sulfonyl oxygens
and a local maximum close to the chlorine. The
corresponding surface representation shows that these are
the major determinants of the polarizability distribution.
Polarizability near the sulfonyl oxygens indicate the
compactness of the electron density around this functional
group, while the maximum near the chlorine shows up the
polarizable nature of the electron density at this site of the
molecule. Sites near to the chlorine are thus most likely
expected to contribute to dispersive interactions with other
molecules.

Another important class of molecular interactions are
donor–acceptor interactions, which are described qualita-
tively by the Lewis acid–base concept. Electron donor–
acceptor interactions may lead to electron redistribution
processes that favor the formation of induced dipoles. As
with the local polarizabilities, preferred sites for such
interactions can be expected at the surface extremes of
these properties. For the IEL, Fig. 6 reveals pronounced
maxima above and beneath the ring plane, and a minimum
in the vicinity of the chlorine, quantitatively encoding the
fragment’s donor properties. The characteristic maxima on
the ring plane surfaces are commonly observed features for
aromatic systems. They serve in this sense as a pharmaco-
phoric equivalent for the ring centroids traditionally used
for aromatic systems. While the IEL maxima reflect the
energetic preference for maintaining integral π-systems, the
minimum close to the chlorine represents the pronounced
donor properties at this site of the molecular surface. The
EAL panel shows that the method efficiently recovers
maxima ortho to ring carbons substituted with electron
withdrawing groups and the ipso carbon itself. These sites
represent areas most likely to interact with a donor site of
another molecule. In summary, the set of semiempirically
derived local property extremes accurately describes the
fragment in terms of important molecular interaction
features.

B3LYP/6-311+G(d) 

a) b)

AM1

Fig. 7 a, b MEP surfaces derived from AM1 and B3LYP/6–311+G(d)
calculations. Computed MEP on the 0.003 e Å-3 isodensity surface of 1
is shown as derived from AM1 (a) and B3LYP/6–311+G(d)
calculations (b). The rear view is directed along the Cl–C axis. A

positive electrostatic potential (the σ-hole) is visible along the
extension of the Cl-C σ-bond for both a and b. Images of the
B3LYP electrostatic potential surface were created with gOpenMol
[57–59]
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Validation study—inhibitors of factor Xa

As a proof-of-concept study for similarity identification, the
inhibitors FXa 3 and FXa 4 of the blood coagulation
protease Factor Xa [25] with structurally different scaffolds
were compared (Fig. 8; the core fragments highlighted in
red will be referred to as scaffold-3 and scaffold-4,
respectively). The same pharmacophoric replacement of

2,3-diaminopyridine by cyclopropylamino acid amide was
also observed for bradykinin B1 receptor antagonists [25].

The validation itself consisted of two parts: firstly, we
wanted to determine whether our concept of exit vector
matching is suitable for identifying the appropriate frag-
ment conformation and for automatically aligning the
coordinates of the surface property extremes onto the query
fragment. Secondly, we were interested in comparing our
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N NH
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N

O
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NH

O NH

N

N
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O

4 3 

MEP 
surface

IEL 
surface 

IEL 
critical 
points 

b)  

c)  

a)  

Fig. 8 a–c Comparison of the
MEP and IEL surfaces for the
scaffolds of inhibitors 3 and 4.
a Structures of inhibitors 3 and 4
with the respective scaffolds
highlighted in red. b, c MEP and
IEL surfaces (IEL local property
pharmacophores are shown)

rms = 0.14 rms = 0.31 

4a 4b 

Fig. 9 Exit vector matching used to align the fragment’s conformer
library of scaffold 4 onto the reference geometry of scaffold-3. The
binding conformation of scaffold-3 was obtained by modeling the
whole inhibitor 3 into X-Ray structures of related factor Xa inhibitors
(data not shown). The template conformer library for scaffold-3 was
generated by Omega and subjected to our exit vector matching and
alignment procedure (see Methods for details). Centre Aligned exit

vectors with rms cutoff set to 0.5 (16 solutions including symmetrical
matches for some fragments; the reference exit vector is highlighted in
red). Left Best exit vector match (scaffold conformer 4a); however,
shows only low overall similarity. Right Good exit vector similarity
and best overall similarity (scaffold conformer 4b) for scaffolds 3 and
4. Despite their structural difference, scaffolds 3 and 4 possess a
similar pattern of local property extremes at the respective surfaces
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method of pharmacophore-type similarity scoring to other
methods that are frequently used for similarity comparison
and virtual screening.

Figure 9 shows an example for the exit vector alignment
of the conformer library for the target scaffold-4. As
reference geometry, we modeled the inhibitor 3 into the
active site of factor Xa co-crystallized with a structurally
related inhibitor (data not shown). After cleaving off the
terminal substituents, we kept the geometry of scaffold-3
fixed and extracted the exit vector as described in Methods.
Then we applied our SMART-based exit vector matching
and alignment to identify suitable conformers out of the
conformer library for scaffold-4. Best results were obtained
with an rms cutoff of 0.5, which gives 16 solutions for nine
conformers, i.e., the other six conformers were rejected due
to high rms distances. As the exit vector SMARTS string
“LiAALi”, Li for the exit vector, allowed symmetrical
matches, we obtained two solutions for seven of the
conformers in the library. In this example, we identified
the choice of the rms cutoff as a potential source of
fuzziness in the exit-vector-based alignment. Large rms
values also include solutions that are not suitable in terms
of their overall alignment, thus increasing the risk of false
positives in the subsequent local property pharmacophore
comparison. Too low an rms cutoff, however, increases the
risk of losing the best matches in terms of overall similarity,
as depicted in the two alignment comparisons in Fig. 9.
Nevertheless, this should not be seen as the limiting step of
the similarity analysis, as the quality of the results can be
assessed easily either by visual inspection or by further
profiling (e.g., shape filtering). In our hands, this method
worked well and allowed the automated alignment of the
pre-calculated local surface property extremes in a very
accurate manner (no difference was obtained on re-
calculating the property pharmacophores of the aligned
conformer).

Having identified suitable conformers of the target
fragment scaffold-4, we compared the local property
pharmacophores as described above in detail. Not surpris-
ingly, the radius of the pharmacophore spheres turned out to
be an important parameter. Sphere radii larger than 1.3 Å
resulted in fuzzy solutions; on the other hand radii smaller
than 0.5 Å turned out to be too restrictive and identified
matches only of closely related fragments. We obtained the

best balance for a sphere radius of 1.0 Å, which was set as
the default parameter in subsequent analysis.

For our selection of nine conformers obtained in 16
different poses by exit vector alignment, we found
pharmacophore scores ranging from 0.00 to 0.47. In total,
the method differentiates well among the different solutions
from exit vector matching. For example, we obtained a
score of 0.06 for the alignment scaffold-4a (Fig. 9). In
contrast, scaffold-4b was found to be the best solution with
a total score of 0.47. This agrees reasonably well with the
manual alignment, where we obtained a total score of 0.59.
In the bound conformation, modeled in a manner analogous
to that described for inhibitor 3, the total score is reduced to
0.41. This is caused mainly by slight distortions of the
geometry in the active site environment.

Valuable information obtained using ParaFrag might
include individual contributions of the total score obtained
in the property pharmacophore comparison. In our present
example, the best score of 0.59 can be partitioned into the

Table 1 Comparison of ParaFrag to alternative similarity metrics. MCSS Maximum common substructure search

Query: FXa 3 Daylight MCSS ROCS (ShapeTanimoto) Feature Trees ParaFraga

Target: FXa 4 0.22 0.08 0.88 0.85 0.59 (0.47)

a Value obtained for manual alignment (best solution). The result in brackets corresponds to the best result for the automated alignment by exit
vector matching performed on a conformer library of scaffold-4 (corresponding to conformer 4b in Fig. 9)

NH

O NH

R

RO

NH

NH

R

N

RO

Fig. 10 Local property pharmacophore representations of scaffolds 3
and 4. A comparison of the entire local property pharmacophores of
scaffolds 3 and 4 reveals conservation of essential interaction features
despite the markedly different scaffolds. Local property features are
coded by color and size as described in Fig. 2
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individual terms of MEP=1.0; IEL=0.13; EAL=0.75;
POL=0.5. This might help to characterize important
features of a given fragment to be used for biased searches.

Finally, we compared the results of our method with
those obtained using established similarity metrics (see
results in Table 1). Not surprisingly, atom-based methods
such as Daylight or Maximum common substructure search
(MCSS) fail to recognize the similarity of the two scaffolds.
In contrast, pure shape matching (ROCS [60]) or feature
comparison (Feature Trees [61]) show high similarity
scores but for complementary reasons. Feature Trees
captures the conserved donor/acceptor patterns of the two
scaffolds without giving details of their electronic nature.
ROCS, however, provides an insight into the shape
similarity of the two scaffolds. Thus, the results of the
two methods can be considered complementary. However,
in our experience, ROCS is quite tolerant with respect to
subtle differences.

ParaFrag seems to lie between the two extremes. The
distribution of extreme vertices on the surface provides an
approximate description of the molecular shape together
with a highly accurate description of the local surface
properties (Fig. 8) in summary leading to a more specific
scoring scheme. In addition to the numerical similarity
value, the method also offers the possibility of inspecting
the results in more detail by visual comparison of the
positions of the unique surface extremes (Fig. 10).

In summary, scaffold hopping from scaffold-3 to
scaffold-4 can be explained by a similar pattern of
interaction features consistent with the distribution of local
properties on the molecular surface, thus corroborating the
central hypothesis underlying this work.

Summary and outlook

We have presented a novel approach for the surface-based
similarity comparison of rigid molecular fragments.
Extremes of semiempirically derived electronic properties
on the molecular surface were demonstrated to describe a
molecule in terms of intermolecular interaction features
independent of chemical structure. Although the method is
based on a statistical scrutiny of the local property surfaces,
the critical positions identified correlate well with an
analytical validation model. It was shown that semiempir-
ical MO theory may be used to explore non-classical
interaction features that are not covered in most force-field
based approaches. The accuracy and relevance of these
features was validated by DFT calculations at the B3LYP
level of theory. A retrospective study of a known example
for scaffold hopping revealed that our method can
reproduce the similarity of structurally different scaffolds
with similar biological profiles. The automated exit vector

matching and alignment offers a fast and accurate way of
conformer selection, reducing the number of QM calcu-
lations to the absolute minimum. These findings encourage
us to develop our approach further towards an independent
tool for scaffold hopping. We emphasize here, however,
that the study presented in this work focused on the
comparison of rigid fragments. Thus, the critical aspect of
conformational flexibility still hampers the wider applica-
tion of this method.
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